Evaluation of KIM-1, Cystatin-C and glomerular filtration rate in schoolchildren exposed to inorganic fluoride Jiménez-Córdova MI¹, González-Horta MC¹, Aguilar-Madrid G³, Barrera-Hernández A¹, Sánchez-Peña LC³, Barbier OC¹, Del Razo LM¹ ¹Toxicología, Cinvestav-IPN. Ciudad de México, México. ³Universidad Autónoma de Chihuahua, Chihuahua México. ³Salud en el Trabajo, Instituto Mexicano del Seguro Social, México City., México. **Abstract ID & Poster Board #PP10.8** ## Introduction The inorganic fluoride (F-) is widely distributed in the environment. It has been estimated more than 200 millions of people worldwide are exposed to elevated levels of F- (>1.5 mg/L) through drinking water. The children are a risk group susceptible to damage by F- exposure. Experimental data and some epidemiological studies had shown renal toxic effects induced by F- exposure. However, the information in susceptible populations such as children is limited. # Objective The aim of this study was to evaluate in a children population the association between F- exposure and early biomarkers of kidney injury as the urinary levels of Kidney injury molecule 1 (KIM-1), Cystatin-C (Cys-C) and estimated glomerular filtration rate (eGFR). ### I. General characteristics **Table 1.** General characteristics of the study population. | Variable | n(%) | Mean ± SD (min-max) | |---------------------------------|------------|---------------------------| | Sex | | | | Male | 191 (46) | | | Female | 224(54) | | | Age (years) | 401 | $8.7 \pm 1.8 (5-13)$ | | BUN (mg/dL) | 406 | $9.8 \pm 2.7 (4.2-23.8)$ | | BMI (Kg/m ³) | | | | Underweight | 9(2) | | | Normal | 278 (72) | | | Overweight | 49 (13) | | | Obesity | 48 (13) | | | F ⁻ water | | | | ≤1.5 mg F ⁻ /L | 263 (64) | $0.19 \pm 0.2 (0.01-1.3)$ | | >1.5 mg F ⁻ /L | 149 (36) | $2.2 \pm 0.5 (1.7-5.8)$ | | F- urine ^a | | | | ≤2 µg F⁻/mL | 146 (41.5) | $1.4 \pm 0.3 (0.6-1.9)$ | | >2 µg F-/mL | 206 (58.5) | $3.2 \pm 1.2 (2.01-14.2)$ | #### 58% of the population present high F⁻ urine levels #### II. F exposure Fig 1. Relationship of fluoride levels between urine and water (n=350, r_s =0.379, p<0.0001) Drinking water contribute to fluoride exposure in the study population ## Results # III. Kidney biomarkers and F⁻ exposure Table 2. Kidney function biomarkers and F- urine levels | Variable | n | Mean ± SD or GM (RIQ) | |-----------------------------------|---------------|-----------------------| | eGFR (mL/min/1.73m ²) | | | | ≤2 µg F⁻/mL | 123 | 79 ± 0.8 | | >2 μg F ⁻ /mL | 182 | 81 ± 0.7 | | Cys-C (ng/mL) ^a | | | | ≤2 µg F⁻/mL | 123 | 42 (22-71) | | >2 μg F ⁻ /mL | 189 | 53 (34-87) | | KIM-1 (pg/mL) ^a | | | | ≤2 µg F⁻/mL | 93 | 145 (65-322) | | >2 μg F ⁻ /mL | 142 | 225 (78-498) | | SD, standard deviation. IQR, inte | erquartile ra | ange (25%-75%). eGFR, | estimated glomerular filtration rate. aNormalized by urine specific Fig 3. Cys-C and KIM-1 by level of urinary F⁻ in children, Mann Whitney test was performed. >2 µg/mL #### Levels of Cys-C were significant higher in the F exposed group, and marginally significant to KIM-1 and eGFR. **Table 1.** Simple and robust regression analysis between F- exposure and kidney function biomarkers | Kidney injury biomarkers | F ⁻ urine (>2 μg/mL) | | | |-----------------------------------|---------------------------------|----------------------------------|--| | | Simple | Adjusted | | | | β (p-value) | β (p-value) | | | eGFR (mL/min/1.73m ²) | 1.87 (0.086) | 2.09 (0.045) ^a | | | Cys-C (ng/mL) | 15.2 (0.022) | 19.3 (0.005) ^b | | | KIM-1 (pg/mL) | 71.3 (0.224) | 52 (0.186) ^c | | ^aAdjusted by age, BMI, atherogenic index and sex (R²=0.104, n=320). ^bAdjusted by sex and urate amorphous crystals (R²=0.036, n=311). ^cAdjusted by age, sex and BMI (R²=0.052, n=219). The multiple regression analysis shows a positive and significant relationship between Cys-C, eGFR and the F⁻ urine levels ## Conclusions < \acute{o} = 2 μ g/mL This results show an association between the F⁻ exposure and the increase in the urinary excretion of Cystatin-C and the estimated glomerular filtration rate, suggesting a relationship between early kidney injury and the F⁻ exposure. This early injury may contribute to the development of diseases in the adultness.