

Evaluation of KIM-1, Cystatin-C and glomerular filtration rate in schoolchildren exposed to inorganic fluoride

Jiménez-Córdova MI¹, González-Horta MC¹, Aguilar-Madrid G³, Barrera-Hernández A¹, Sánchez-Peña LC³, Barbier OC¹,

Del Razo LM¹ ¹Toxicología, Cinvestav-IPN. Ciudad de México, México. ³Universidad Autónoma de Chihuahua, Chihuahua México. ³Salud en el Trabajo, Instituto Mexicano del Seguro Social, México City., México.

Abstract ID & Poster Board #PP10.8

Introduction

The inorganic fluoride (F-) is widely distributed in the environment. It has been estimated more than 200 millions of people worldwide are exposed to elevated levels of F- (>1.5 mg/L) through drinking water. The children are a risk group susceptible to damage by F- exposure. Experimental data and some epidemiological studies had shown renal toxic effects induced by F- exposure. However, the information in susceptible populations such as children is limited.

Objective

The aim of this study was to evaluate in a children population the association between F- exposure and early biomarkers of kidney injury as the urinary levels of Kidney injury molecule 1 (KIM-1), Cystatin-C (Cys-C) and estimated glomerular filtration rate (eGFR).

I. General characteristics

Table 1. General characteristics of the study population.

Variable	n(%)	Mean ± SD (min-max)
Sex		
Male	191 (46)	
Female	224(54)	
Age (years)	401	$8.7 \pm 1.8 (5-13)$
BUN (mg/dL)	406	$9.8 \pm 2.7 (4.2-23.8)$
BMI (Kg/m ³)		
Underweight	9(2)	
Normal	278 (72)	
Overweight	49 (13)	
Obesity	48 (13)	
F ⁻ water		
≤1.5 mg F ⁻ /L	263 (64)	$0.19 \pm 0.2 (0.01-1.3)$
>1.5 mg F ⁻ /L	149 (36)	$2.2 \pm 0.5 (1.7-5.8)$
F- urine ^a		
≤2 µg F⁻/mL	146 (41.5)	$1.4 \pm 0.3 (0.6-1.9)$
>2 µg F-/mL	206 (58.5)	$3.2 \pm 1.2 (2.01-14.2)$

58% of the population present high F⁻ urine levels

II. F exposure

Fig 1. Relationship of fluoride levels between urine and water (n=350, r_s =0.379, p<0.0001)

Drinking water contribute to fluoride exposure in the study population

Results

III. Kidney biomarkers and F⁻ exposure

Table 2. Kidney function biomarkers and F- urine levels

Variable	n	Mean ± SD or GM (RIQ)
eGFR (mL/min/1.73m ²)		
≤2 µg F⁻/mL	123	79 ± 0.8
>2 μg F ⁻ /mL	182	81 ± 0.7
Cys-C (ng/mL) ^a		
≤2 µg F⁻/mL	123	42 (22-71)
>2 μg F ⁻ /mL	189	53 (34-87)
KIM-1 (pg/mL) ^a		
≤2 µg F⁻/mL	93	145 (65-322)
>2 μg F ⁻ /mL	142	225 (78-498)
SD, standard deviation. IQR, inte	erquartile ra	ange (25%-75%). eGFR,

estimated glomerular filtration rate. aNormalized by urine specific

Fig 3. Cys-C and KIM-1 by level of urinary F⁻ in children, Mann Whitney test was performed.

>2 µg/mL

Levels of Cys-C were significant higher in the F exposed group, and marginally significant to KIM-1 and eGFR.

Table 1. Simple and robust regression analysis between F- exposure and kidney function biomarkers

Kidney injury biomarkers	F ⁻ urine (>2 μg/mL)		
	Simple	Adjusted	
	β (p-value)	β (p-value)	
eGFR (mL/min/1.73m ²)	1.87 (0.086)	2.09 (0.045) ^a	
Cys-C (ng/mL)	15.2 (0.022)	19.3 (0.005) ^b	
KIM-1 (pg/mL)	71.3 (0.224)	52 (0.186) ^c	

^aAdjusted by age, BMI, atherogenic index and sex (R²=0.104, n=320). ^bAdjusted by sex and urate amorphous crystals (R²=0.036, n=311). ^cAdjusted by age, sex and BMI (R²=0.052, n=219).

The multiple regression analysis shows a positive and significant relationship between Cys-C, eGFR and the F⁻ urine levels

Conclusions

< \acute{o} = 2 μ g/mL

This results show an association between the F⁻ exposure and the increase in the urinary excretion of Cystatin-C and the estimated glomerular filtration rate, suggesting a relationship between early kidney injury and the F⁻ exposure. This early injury may contribute to the development of diseases in the adultness.